Study Finds Connection Between Small Body Size and Increased Evolutionary Flexibility in Bird Wing Skeleton Proportions

Photo of author

By 5mustsee.com


<

div id=””>

  • Klingenberg, C. P. Investigating Morphological Integration and Modularity Across Various Levels: Concepts and Analysis. Philosophical Transactions of the Royal Society B: Biological Sciences 369, 20130249 (2014).

    Article 

    Google Scholar
     

  • Pigliucci, M. Exploring Phenotypic Integration: Investigating the Ecology and Evolution of Complex Traits. Ecology Letters 6, 265–272 (2003).

    Article 

    Google Scholar
     

  • Klingenberg, C. P. Analyzing Morphometric Integration and Modularity in Landmark Configurations: Assessing Predefined Hypotheses. Evolution & Development 11, 405–421 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zelditch, M. L. & Goswami, A. Defining Modularity: Insights from Evolution and Development. Evolution & Development 23, 377–403 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Evans, K. M., Buser, T. J., Larouche, O. & Kolmann, M. A. Unraveling the Connection Between Developmental and Evolutionary Integration. vol. 145, 22–27 (Elsevier, 2022).

  • Jones, K. E., Angielczyk, K. D. & Pierce, S. E. Sequential Changes Drive Evolutionary Patterns in Mammalian Vertebral Column Complexity. Nature Communications 10, 1–13 (2019).

    ArticleGoogle Scholar 

  • Criswell, K. E., Roberts, L. E., Koo, E. T., Head, J. J. & Gillis, J. A. hox gene expression predicts tetrapod-like axial regionalization in the skate, leucoraja erinacea. Proc. Natl Acad. Sci. 118, e2114563118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    Google Scholar 

  • Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. 115, 555–560 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    Google Scholar 

  • Stevens, R. D. & Guest, E. E. Wings of fringed fruit-eating bats (artibeus fimbriatus) are highly integrated biological aerofoils from perspectives of secondary sexual dimorphism, allometry and modularity. Biological J. Linnean Soc. 137, 711–719 (2022).

  • Wagner, G. P. The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J. Evolut. Biol. 1, 45–66 (1988).

    Article 
    Google Scholar 

  • Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution 72, 2580–2594 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frédérich, B., Olivier, D., Litsios, G., Alfaro, M. E. & Parmentier, E. Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes. Proc. R. Soc. B Biol. Sci. 281, 20141047 (2014).

    Article 

    Google Scholar
     

  • Evans, K. M., Waltz, B. T., Tagliacollo, V. A., Sidlauskas, B. L. & Albert, J. S. Fluctuations in evolutionary integration allow for big brains and disparate faces. Sci. Rep. 7, 1–11 (2017).

    Article 

    Google Scholar
     

  • Navarro-Díaz, A., Esteve-Altava, B. & Rasskin-Gutman, D. Disconnecting bones within the jaw-otic network modules underlies mammalian middle ear evolution. J. Anat. 235, 15–33 (2019).

    Article 
    PubMed 
    PubMed Central– A study on mammalian middle ear evolution by Navarro-Díaz, A. and Esteve-Altava, B. is available on Google Scholar.
    – Navalón, G., Marugán-Lobón, J., Bright, J. A., Cooney, C. R., and Rayfield, E. J. researched the craniofacial integration in Darwin’s finches and Hawaiian honeycreepers, which can be found in Nature Ecology and Evolution.
    – Goswami, A., Smaers, J. B., Soligo, C., and Polly, P. D. explored the macroevolutionary consequences of phenotypic integration in Philosophical Transactions of the Royal Society B.
    – Gatesy, S. M. and Dial, K. P. delved into locomotor modules and avian flight evolution in the journal Evolution.
    – Flury, J. M. et al. investigated the genetic basis of a unique reproductive strategy in sulawesi ricefishes, which was published in Evolution.The
    Google Scholar
    references a study by Hedrick, B. P. et al. that discusses morphological diversification in a diverse mammal clade in the J. Mamm. Evol. journal (27, 563–575, 2019). The
    Google Scholar
    provides more details on this reference. Another study by Evans, K. M. et al. in Proc. Natl Acad. Sci. (118, e2101330118, 2021) investigates how integration drives rapid phenotypic evolution in flatfishes. Additional references include Raff, R. A.’s book, The Shape of Life: Genes, Development, and the Evolution of Animal Form (University of Chicago Press, Chicago, 1996), Brown, J. H. & Maurer, B. A.’s work on body size and ecological dominance in Nature (324, 248–250, 1986), and Rossoni, D. M., Assis, A. P. A., Giannini, N. P. & Marroig, G.’s study on natural selection in leaf-nosed bats in Sci. Rep. (7, 1–11, 2017). Various links are provided for further reading and exploration.
    Google Scholar
     

  • Benson, R. B., Hunt, G., Carrano, M. T. & Campione, N. Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61, 13–48 (2018).

    Article 

    Google Scholar
     

  • Klingenberg, C. P. Cranial integration and modularity: insights into evolution and development from morphometric data. Hystrix 24, 43 (2013).


    Google Scholar
     

  • Klingenberg, C. P. & Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Biewener, A. A. Biomechanical consequences of scaling. J. Exp. Biol. 208, 1665–1676 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).

    Article 
    PubMed– Google Scholar Reference: [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Perspective%3A%20complex%20adaptations%20and%20the%20evolution%20of%20evolvability&journal=Evolution&doi=10.2307%2F2410639&volume=50&pages=967-976&publication_year=1996&author=Wagner%2CGP&author=Altenberg%2CL)

    – Benson, R. B. & Choiniere, J. N. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. B Biol. Sci. 280, 20131780 (2013). [Article](https://doi.org/10.1098%2Frspb.2013.1780) | [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Rates%20of%20dinosaur%20limb%20evolution%20provide%20evidence%20for%20exceptional%20radiation%20in%20mesozoic%20birds&journal=Proc.%20R.%20Soc.%20B%20Biol.%20Sci.&doi=10.1098%2Frspb.2013.1780&volume=280&publication_year=2013&author=Benson%2CRB&author=Choiniere%2CJN)

    – Assis, A. P. A., Rossoni, D. M., Patton, J. L. & Marroig, G. Evolutionary processes and its environmental correlates in the cranial morphology of western chipmunks (Tamias). Evolution 71, 595–609 (2017). [Article](https://doi.org/10.1111%2Fevo.13137) | [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27917480) | [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Evolutionary%20processes%20and%20its%20environmental%20correlates%20in%20the%20cranial%20morphology%20of%20western%20chipmunks%20%28tamias%29&journal=Evolution&doi=10.1111%2Fevo.13137&volume=71&pages=595-609&publication_year=2017&author=Assis%2CAPA&author=Rossoni%2CDM&author=Patton%2CJL&author=Marroig%2CG)

    – Lees, A. C. et al. State of the world’s birds. Annu. Rev. Environ. Resour. 47, 231–260 (2022). [Article](https://doi.org/10.1146%2Fannurev-environ-112420-014642) | [Google Scholar](http://scholar.google.com/scholar_lookup?&title=State%20of%20the%20world%E2%80%99s%20birds&journal=Annu.%20Rev.%20Environ.%20Resour.&doi=10.1146%2Fannurev-environ-112420-014642&volume=47&pages=231-260&publication_year=2022&author=Lees%2CAC)

    – Orkney, A., Bjarnason, A., Tronrud, B. C. & Benson, R. B. Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules. Nat. Ecol. Evol. 5, 1250–1258 (2021). [Article](https://doi.org/10.1038%2Fs41559-021-01509-w) | [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34282318) | [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Patterns%20of%20skeletal%20integration%20in%20birds%20reveal%20that%20adaptation%20of%20element%20shapes%20enables%20coordinated%20evolution%20between%20anatomical%20modules&journal=Nat.%20Ecol.%20Evol.&doi=10.1038%2Fs41559-021-01509-w&volume=5&pages=1250-1258&publication_year=2021&author=Orkney%2CA&author=Bjarnason%2CA&author=Tronrud%2CBC&author=Benson%2CRB)

    – Dial, K. P. Evolution of avian locomotion: correlates of flight style, locomotor modules, nesting biology, body size, development, and the origin of flapping flight. Auk 120, 941–952 (2003).Article 

    Google Scholar
     

  • Billerman, S. M., Keeney, B. K., Rodewald, P. G. S. T. S. Birds of the world. https://birdsoftheworld.org/bow/home (2022).

  • Mayr, G. Old world fossil record of modern-type hummingbirds. Science 304, 861–864 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McGuire, J. A. et al. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torres, C. R., Norell, M. A. & Clarke, J. A. Bird neurocranial and body mass evolution across the end-cretaceous mass extinction: The avian brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099 (2021).

    <

    p class=”c-article-references__links u-hide-print”>Article 
    ADS 
    PubMed 
    PubMed Central
    Google Scholar
     

  • Videler, J. J. Avian flight (Oxford University Press, 2006).

  • Taylor, G. & Thomas, A. Evolutionary biomechanics (OUP Oxford, 2014).

  • Nudds, R. L., Kaiser, G. W. & Dyke, G. J. Scaling of avian primary feather length. PLoS One 6, e15665 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nudds, R. L. Wing-bone length allometry in birds. J. Avian Biol. 38, 515–519 (2007).


    Google Scholar
     

  • Hedrick, B. P., Dickson, B. V., Dumont, E. R. & Pierce, S. E. The evolutionary diversity of locomotor innovation in rodents is not linked to proximal limb morphology. Sci. Rep. 10, 1–11 (2020).

    Article 

    Google Scholar
     

  • Navalón, G., Bjarnason, A., Griffiths, E. & Benson, R. B. Environmental signal in the evolutionary diversification of bird skeletons. Nature 611, 306—311 (2022).

    Article 
    PubMedIn a study by Burton, M. G. P., Benson, R. B., and Field, D. J., they quantified skeletal pneumaticity to understand the ecological factors driving a significant avian trait. The research was published in the Proceedings of the Royal Society B in 2023. You can access the article on the Royal Society website, PubMed, or PubMed Central, or view it on Google Scholar.

    Another study conducted by Baumgart, S. L., Sereno, P. C., and Westneat, M. W., explored wing morphology in waterbirds and its association with behavior, habitat, migration, and phylogenetic convergence. The findings were published in Integrative Organismal Biology in 2021. The article is available for reading on the publisher’s website, and you can also find it on Google Scholar.

    Simons, E. L., and O’connor, P. M., studied bone laminarity in avian forelimb skeletons and its relation to flight modes to test functional interpretations. The research was published in The Anatomical Record in 2012. You can read the article or access it on Google Scholar.

    Mitchell, J., Legendre, L. J., Lefevre, C., and Cubo, J. examined bone histological features related to soaring and high-frequency flapping flight in birds’ furculae. The study was published in Zoology in 2017. You can find the article or check it out on Google Scholar.

    Hieronymus, T. L. conducted a study focusing on qualitative skeletal characteristics.Study by Tobalske (2010) focuses on hovering and intermittent flight in birds, emphasizing their flight behavior. Another research by Tobalske (1996) explores the relationship between muscle composition, wing morphology, and flight behavior in woodpeckers. Shatkovska and Ghazali (2023) discuss the covariation in shapes between the sternum and pelvis in aquatic birds with different locomotor modes. Lowi-Merri et al. (2021) investigate the link between sternum variation and locomotion mode in birds. Additionally, Lowi-Merri et al. (2023) reconstruct the locomotor ecology of extinct avialans by comparing sternum morphology and skeletal proportions in a study on ichthyornis.Google Scholar

  • Hallgrímsson, B. & Maiorana, V. Variability and size in mammals and birds. Biol. J. Linn. Soc. 70, 571–595 (2000).

    Article
    Google Scholar

  • Hallgrímsson, B., Willmore, K. & Hall, B. K. Canalization, developmental stability, and morphological integration in primate limbs. Am. J. Phys. Anthropol. 119, 131–158 (2002).

    Article
    Google Scholar

  • Rothier, P. S., Fabre, A.-C., Clavel, J., Benson, R. B. & Herrel, A. Mammalian forelimb evolution is driven by uneven proximal-to-distal morphological diversity. Elife 12, e81492 (2023).

    Article
    CAS
    PubMed
    PubMed Central
    Google Scholar

  • Bell, E., Andres, B. & Goswami, A. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats. J. Evolut. Biol. 24, 2586–2599 (2011).

    Article
    CAS
    Google Scholar

    • Wing, S. L. & Tiffney, B. H. The reciprocal interaction of angiosperm evolution and tetrapod herbivory. Rev. Palaeobot. Palynol. 50, 179–210 (1987).

      Article
      Google Scholar

    • Baken, E., Collyer, M., Kaliontzopoulou, A. & Adams, D. geomorph v4.0 and gmshiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods in Ecology and Evolution 12, 2355–2363 (2021).

    • Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken, E. Geomorph: Software for geometric morphometric analyses. R package version 4.0.7. https://cran.r-project.org/package=geomorph (2024).

    • Collyer, M. & Adams, D. RRPP: Linear Model Evaluation with Randomized Residuals in a Permutation Procedure, R package version 2.0.0 https://cran.r-project.org/package=RRPP (2024).

    • Collyer, M. & Adams, D. RRPP: An R package for fitting linear models to high‐dimensional data using residual randomization (2018).

    • Prum, R. O. et al. A comprehensive phylogeny of birds (aves) using targeted next-generation dna sequencing. Nature 526, 569–573 (2015).

      Article
      ADS
      CAS
      PubMed
      Google Scholar

    • Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. 116, 7916–7925 (2019).

      Article
      ADS
      CAS
      PubMed
      PubMed Central

    Google Scholar 

  • Felsenstein, J. Phylogenies and the comparative method. Am. Naturalist 125, 1–15 (1985).

    Article 

    Google Scholar
     

  • Gatesy, S. M. & Middleton, K. M. Bipedalism, flight, and the evolution of theropod locomotor diversity. J. Vertebrate Paleontol. 17, 308–329 (1997).

    Article 

    Google Scholar
     

  • Monteiro, L. R., Bonato, V. & Dos Reis, S. F. Evolutionary integration and morphological diversification in complex morphological structures: mandible shape divergence in spiny rats (rodentia, echimyidae). Evol. Dev. 7, 429–439 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Klingenberg, C. P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132 (2008).

    Article 

    Google Scholar
     

  • Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    <

    p class=”c-article-references__links u-hide-print”>Article– The article references various resources used in phylogenetic comparative biology and statistical computing.
    – The references include links to Google Scholar, external packages, articles, CAS, PubMed, and R Foundation for Statistical Computing.
    – Each reference provides valuable information related to the field of study and the tools used for analysis.
    – Researchers can explore these resources to deepen their understanding of phylogenetic comparative biology and statistical analysis techniques in R.- A reference to an article titled “ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R” by Paradis, E and Schliep, K published in Bioinformatics in 2018 is available on Google Scholar.

    • An article on “dplyr: A Grammar of Data Manipulation” by Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. was published in the R package version 1.1.1 in 2023. Access the information here.

    • Wickham, H. discussed reshaping data with the reshape package in the article published in the J. Stat. Softw. in 2007. More details can be found here.

    • An article on “zoo: S3 infrastructure for regular and irregular time series” by Zeileis, A. & Grothendieck, G. was published in J. Stat. Softw. in 2005. Access the article through Google Scholar.- ggpubr. R package version 0.6.0 (2023).

    • Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with ’ggplot2’. ggrepel. R package version 0.9.3 (2023).
    • Urbanek, S. jpeg: Read and write JPEG images. jpeg. R package version 0.1-10 (2022).
    • Ooms, J. magick: Advanced Graphics and Image-Processing in R. magick. R package version 2.8.2 (2023).
    • Urbanek, S. png: Read and write PNG images. png. R package version 0.1-8 (2022).

    Source link

  • Leave a Comment

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Share to...